Based on K. H. Rosen: Discrete Mathematics and its Applications.
Lecture 10: Functions. Inverses and compositions. Section 2.3

1 Inverses and compositions

Definition 1. Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b)=a$ when $f(a)=b$.

Definition 2. Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$ is defined by

$$
(f \circ g)(a)=f(g(a)) \quad \text { for all } \quad a \in A
$$

Example 3. Consider $f(x)=2 x-5$ and $g(x)=3 x+2$ both as functions $\mathbb{R} \rightarrow \mathbb{R}$. Find $f \circ g$ and $g \circ f$.

$$
(f \circ g)(x)=2(3 x+2)-5=6 x-1 \quad(g \circ f)(x)=3(2 x-5)+2=6 x-13 .
$$

As we can see, the compositions $f \circ g$ and $g \circ f$ do not need to be equal.
Example 4. Let $f: A \rightarrow B$ be a bijection and $f^{-1}: B \rightarrow A$ the inverse map. Then

$$
f \circ f^{-1}=\iota_{B} \quad \text { and } \quad f^{-1} \circ f=\iota_{A} .
$$

Example 5. As seen before, the function $h:\{1,2,3\} \rightarrow\{a, b, c\}$ defined by

$$
h(1)=a, \quad h(2)=b \quad \text { and } \quad h(3)=c,
$$

is both injective and surjective. The inverse function is $h^{-1}:\{a, b, c\} \rightarrow\{1,2,3\}$ assigning

$$
h(a)=1, \quad h(b)=2 \quad \text { and } \quad h(c)=3 .
$$

Example 6. Consider the function $f_{3}:[0, \infty) \rightarrow[0, \infty)$ given by the formula $f_{3}(x)=$ x^{2}. We saw already that this is a bijective function and therefore there is an inverse

$$
f_{3}^{-1}:[0, \infty) \rightarrow[0, \infty)
$$

given by $f_{3}(x)=\sqrt{x}$.

