Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 10: Functions. Inverses and compositions. Section 2.3

1 Inverses and compositions

Definition 1. Let f be a **one-to-one correspondence** from the set A to the set B. The **inverse function** of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Definition 2. Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The **composition** of the functions f and g, denoted by $f \circ g$ is defined by

$$(f \circ g)(a) = f(g(a))$$
 for all $a \in A$.

Example 3. Consider f(x) = 2x - 5 and g(x) = 3x + 2 both as functions $\mathbb{R} \to \mathbb{R}$. Find $f \circ g$ and $g \circ f$.

$$(f \circ g)(x) = 2(3x+2) - 5 = 6x - 1$$
 $(g \circ f)(x) = 3(2x-5) + 2 = 6x - 13.$

As we can see, the compositions $f \circ g$ and $g \circ f$ do not need to be equal.

Example 4. Let $f: A \to B$ be a bijection and $f^{-1}: B \to A$ the inverse map. Then

$$f \circ f^{-1} = \iota_B$$
 and $f^{-1} \circ f = \iota_A$.

Example 5. As seen before, the function $h: \{1, 2, 3\} \rightarrow \{a, b, c\}$ defined by

h(1) = a, h(2) = b and h(3) = c,

is both injective and surjective. The inverse function is h^{-1} : $\{a, b, c\} \rightarrow \{1, 2, 3\}$ assigning

$$h(a) = 1$$
, $h(b) = 2$ and $h(c) = 3$.

Example 6. Consider the function $f_3: [0, \infty) \to [0, \infty)$ given by the formula $f_3(x) = x^2$. We saw already that this is a bijective function and therefore there is an inverse

$$f_3^{-1}\colon [0,\infty)\to [0,\infty)$$

given by $f_3(x) = \sqrt{x}$.